あるときなんとなく気が付いた(現代ではない)、それは、2リッタークラスのクルマで低速走行しているとき、ブレーキペダルを急激に(急ブレーキ状態)踏み込んだ場合でも、タイヤがロックするような状態にはならないこと。
特に4輪ディスクとなるとこれがひどい。
でも、排気量が小さな(1300cc)クルマとなると、ブレーキペダルに対するブレーキシステムの反応がまるで違う。それは、走行中でなくても検証できる。
どのようにしたかと言うと、駐車場でエンジン・アイドリング始動中、ギヤはニュートラル。その状態でブレーキペダルを力強く、素早く踏み込んでみれば、その反応で判断できる。
排気量の小さなクルマは、ブレーキペダルがフロア近くまで下がるが(タイヤがロックする状態)、排気量が大きなクルマは、ブレーキペダルからの反発が大きく、どんなに力を入れても、踏み込むのに時間が掛かる。つまり、タイヤがロックする状態まで、ブレーキパッドはローターを締め付けていない。その前に停止してしまうし、制動距離は伸びる。
排気量が大きなクルマは、普段使用するときのペダル踏み込み力を小さくするため、ブレーキブースターを大きくしたり、ダブルとしたりの構造だが、これが災いを招いている。
ブレーキブースターの基本的な構造は、大気圧を利用することで、如何にその大気圧を素早くブースター内に取り込むかが重要だが、それが簡単ではない。
大気圧を素早く大量に取り込めばいいのだが、そればかりを目標に製造すると、ブレーキペダルを踏みつけたとたん(どんなにゆっくりとやっても)、ブースターの力によってマスターシリンダーは強く押され、いきなりタイヤはロックする。
ブレーキペダルを踏みつける力を、素早く、かつバランスよくブレーキ・マスターシリンダーに伝えるには、微妙な構造と調整が重要となるのだ。
また、マスターシリンダーに対する助勢力が加わった瞬間には、その助勢力を維持する構造が必要で、更に、それ以上マスターシリンダーを押す力が加わらないようにしないといけない。そこで組み込まれているのがリアクションディスクと言うゴムの板。でもこのゴムの硬さと厚さが重要。これが難しい。さらに、大気圧を取り込むバルブの大きさやそのバルブに作用するストロークも重要となる。
これがブレーキブースターの構造。よく観察しても作動を理解するには時間が掛かる。定圧室と書かれている所は、エンジンのバキューム圧が掛かるところ
当時の我が愛車は、1秒ぐらいかけてブレーキペダルを踏み込めば、恐らくロックするであろう位置までペダルは踏み込めるが、時間を掛けてのペダル操作では、緊急ブレーキとして役に立たない。
この応答性が悪いブレーキ、何とかしたいと思い、雑誌編集の企画で改良を考えた。そして、大切なことは、マスターバックの構造を理解すること。構造を理解することで、ブレーキのバージョンアップできるヒントが見つかるかもしれないからだ。
そして、この問題となるブレーキの性能は、ブレーキメーカーはもとより、ブースターを製造するメーカーもかなり前から知っていたということが、取材していく最中に分かってきた。
ついでに述べておくが、現在のクルマでは、ABS装着によって、ABSモジュレーターは、ブレーキペダルの踏み込む力が不足していても、ABS作動を目的にブレーキラインの圧力を一杯まで上昇させる構造なので、昔のような(原稿に出てくる表現)問題は起きない。ABS作動条件も、アクセルペダルから足が離れてブレーキペダルを踏み、ブレーキスイッチがONするまでの時間から、急ブレーキ、タイヤロックの条件として、ABS作動となる。もちろん実際にブレーキロック寸前から(タイヤにあるスピードセンサーの波形を使う)ABS作動は基本だが。
実は、ABSの作動スタンバイ、と言うような状態があるようで、各ホイールのスピードセンサーからの信号が不釣合いとなると、ブレーキ信号に関係なく、ABSは作動していると言う話だ。
そのことを聞いたので、路面が良くない場所(ダートなど)を走行しながら、ABSユニットが本当に作動しているかどうか、アクセルペダルを踏んで、ホイールが空転する状態を作り、ブレーキペダルに軽く足を乗せると「ココココココ」と言う軽い信号のようなものを感じた。これがABS作動中という信号らしい。
このようなことを調べていたら、モーターショーの会場、部品館で「高応答型ブレーキブースター」なるものが展示されていたのを発見。
これは取材したいと思い、ブースに居た方にお願いすると「モーターショーが終わったらOKです」と言う返事をもらった。そして、その部品メーカーと言うのが、東京にあるということで、取材に出かける。
取材当日、その高応答型ブレーキブースターは、ブースターそのものと言うより、大気圧を取り込む部分の構造にあることが分かった。大気圧バルブの構造が2重になっており、ブレーキの踏み込む速度と力によって、大気圧バルブの開くストロークが変化すると言うことで、問題を解決すると言う。
それでは、これまでのブレーキペダルフィーリングについて、そのサプライヤーさんはどう感じていたのだろうか聞いてみると、「急ブレーキ状態のときにブレーキペダルが踏み込めない状況が存在するのはかなり前から知っていたが、その状況を著名な自動車評論家の試乗記を読んでも、問題が指摘されていなかったので、なんとなく無視していた」と言うとんでもない状況を知らされた。
それからは、試乗の度にブレーキペダルとその能力について検証し、問題があると開発者に説明を求めたが、内容をはぐらかすばかりで、肝心なことには行き着かなかった。つまり、行き着かないというより、ブレーキブースターとそこに関係する大気圧バルブのことが、理解されていなかったのだと分かった。
しばらくして、ある自動車メーカーが、当時の谷田部(自動車研究所)で、2種類のブレーキブースターを組み付けたクルマの検証を行いますから、体験と確認をしてください、と言う話が舞い込んできた。
その2種類のブースターとは、1点は先ほどの構造が複雑なタイプで、もうひとつは、リアクションディスクの厚みを変更した、ごくシンプルな改良モデルだった。
そして、実際のブレーキペダル感覚と制動感覚を比較すると、どちらも遜色のないことを確認。その結果、その自動車メーカーは、コストが安く、問題の解決に結びつくリアクションディスク改良型を採用した。
そして、マイカーにある問題点はどのようにチューニングすれば解決するのか・・・まず、ブレーキ周りのオーバーホール。キャリパー周りからマスターシリンダー、そしてブースターについて同様に分解して確認する。
すると、大気圧が流れ込む部分にフィルターが二重で付いていることを発見。ここのフィルターはある程度重要で、ここから入った大気圧(空気)はエンジンに吸引されるので、そのことも計算されている。
ブレーキペダルを踏んだときに出る音消しもあるようだから、その音より性能を重視して、片方のフィルターを取り外す。ただし、このフィルターは音消しよりも、吸い込まれる空気(大気)中のごみを除去することが目的なので、無視してはまづい。
このようは改良を行ったことで、緊急ブレーキ性能は少し改良された。
このブレーキブースターレスポンス問題は、各自動車メーカーも重点的に取り上げ、ブースターの基本的な構造が見直されたものも出てきた(現在ではあたりまえになったが)。それは、インテークに作用するバキューム圧を利用すると言うものではなく、油圧モーターとアキュムレーターの採用で、油圧ブースターとしてきたのだ。
最初にやったのは、矢田部の体験試乗で呼んでくれたメーカー。そのメーカーの最上級モデルに採用された。でも、それほどの感激はなかった。
他のメーカーでも巷からの意見を踏まえて、油圧ブースター方式が取り入れられた。とくにハイブリッドカーでは、エンジンが回転していない状況で、バキューム圧が低下していれば、ブレーキ性能がダウンするので、安定的にブースター性能を確保しようとしたら、モーター駆動による高圧オイルポンプと、その圧力を使うブースターは必須項目だった。
T社の構造はかなり複雑で、ストロークセンサーと言うものまで取り付けられたが、確かにブレーキ性能と、そのフィーリングは向上していた。現在ではこれが標準装備となっているようだ。