研究開発に見た遠回りの結論にあきれる -水素エンジンと点火装置-


2014年12月28日日曜日

不定期連載 数式を使わない、クルマの走行安定性の話・7/17


トルクロッドもなくサスペンションアームも持たない独立懸架

サスペンションは、コーナリングの性能を上げるための全体設計ではなく、ニュートラルな走行時におけるサスペンションのあり方を最重点項目として考えるべきである、と考える。コーナリングにおける横力は、直進時におけるクルマの不安定要素をいとも簡単に越えてしまうわけで、コーナリングが素晴らしいクルマが直進安定性がいいと言うことはない。逆に、直進安定性のいいクルマは、コーナリング性能も素晴らしいというのが事実でもある。

ステアリングを切ったときの、クルマに発生する横力の計算は簡単に求められるのだが、直進時における外乱に対しては、いくらスーパーコンピューターを使えども分析できる状況にはならない。

コーナリングの特性から言うと、日本車は、タイヤのコーナリングパワーで曲がるのに対し、西独車はコーナリングパワー+キャンバースラストをバランスよく使っている。そのためレーンチェンジや高速コーナリングでもロールが少ない。特にフロントの沈み込みは少なく、タイヤからのスキール音はでにくい。

ル・マン24時間耐久レースでのことだが、89年に見たマーシャルカーはメルセデス560SELのノーマルカーである。これにオフィシャルが4人乗ってあのグループCカーを引っ張るのだ。これがただのクルマであったのなら、スピードが遅いことにドライバー達からクレームがでる。しかし、メルセデスは違っていた。ストレートでのスピードはもとより、コーナリングもバランスを崩すことなくレーシングカーを引っ張ったのである。翌年登場した日本車のマーシャルカーは、もちろんバリバリの3リッター・ターボ付きレーシングカーであった。

タイヤは幅が広くなればなるほど、路面の凸凹を受けながら、グラグラしながらも目的の場所に向かって転がっていく。このときに発生するグラグラ力はかなり強いものがあり、これをどのように処理するかが一つのポイントでもある。

リヤサスペンションにおいては次のような事例も見られる。まず一つ目は1953年式のメルセデスベンツ300に見られる。 デフをボディ(このときにはシャシーを採用していた)に取り付けて、その両側にスイングアクスルとするタイプである。スイングアクスルとなれば、当然タイヤにかかる前後方向の力を処理するために、ラジアスロッドやトルクロッドの取り付けがあるのが自然なのだが、このベンツ300は当然とも言える、ロッドの取り付けを行なわなかった。次回にはもうひとつの例を記載します。

1953年式のベンツ300。前オーナー曰く「当時は、外車に決まった価格は無く、オークションだったので、輸入の数が少なかったベンツ300は、ロールスロイスより高かったのだぞ」と。我々のところに来たベンツ300はなんと左ハンドルで、コラムシフトのマニュアルミッション(当時はろくなATはなかったので)。ステアリングにはアシストなど付いていない
 
 
つまり、ラバーマウントされたデフを中心にして、タイヤは前後に、自由に動くことになる。これがいったい何を意味するものなのか。NVHだけではないように思う。

フロントは上下アームが非常に短いWウイッシュボーンで、形や寸法からして、どう考えても素晴らしいサスペンション回りとは思えない。

12年ほどたった中古のベンツであったが、その時の走りときたら素晴らしいものであったことを覚えている。とにかく、ステアリングの遊びが多いにも関わらず、どのような路面状態であっても、ハンドルを取られることがないばかりか、左右に振られたり、向きが変わることもない。この状態が100km/h以上まで続いたのである。120km/hまでは出したが、それ以上は出せる道路がなかったので、確認できなかった。

知り合いから譲り受けたベンツ300だったが、当然整備が必要な状態であったため、下回りは分解して交換するのだが、デフのピニオンギヤベアリングはテーパーではなくローラーが使われていた。そのベアリングだが、DIN規格であるのは当然のこと。日本製でも呼び名こそ違っても同じサイズのものがあるので、それを使う。大学時代の機械製図の先生は、JIS規格作った方で、「面倒だから、時間もないし、DINの寸法をまねた」と教えてくれていたため、躊躇無くベアリングは日本製を選んだのだ。

これはそのベンツ300のボンネット先端に取り付けられていたボンネットマスコット。ラジエターキャップと勘違いしていた方もいるようだが、そうではなく、これを取り外すとその中にラジエターキャップがあったと思う。破損したためか、オリジナルとは違っている
これが当時のベンツ300に使われていたヒーターファン。エンジンルーム内に、左右ひとつずつ取り付けられていた。それ程強力ではなかったように記憶する 
 

2014年12月21日日曜日

バイクの駆動系にトーショナルダンパーの硬さアジャストを付ける


クルマでは、トーショナルダンパーのことを、駆動系の捻り振動や曲げ振動低減のために使用されるダイナミックダンパーである、と説明しているが、バイクの場合ではリヤスプロケットばかりではなく、クランクからの1次減速ギヤ(クラッチなどがある部分)の部分に組み込まれることも多い。ただ、クルマのようにダイナミックダンパーとしての目的は無い様に思うのだが。捻り振動はバイクでも目的に入るだろうが、ややこしい話は別として・・・本題に入る。

ダンパーラバーはスプロケットが取り付けられるリヤドリブン・フランジとホイールハブの間に挟みこまれ、加速・減速でのショックを和らげる役目なのだが、経年劣化するとその感触が悪さを発揮する
 
バイクのリヤスプロケット取り付け部分には、ギヤの変速ショックやアクセルの開閉で起きるギクシャク感を低減する目的で、ゴムの挟まれている場合があり、それが災いというか、感触の悪い方向へ劣化する体験をしているのである。

全てのメーカーが、このダンパーゴムを採用しているわけではなく、ホンダ車に多い。

例えば、同じオフロード車であっても、ヤマハTT250Rでは、リヤのハブに直接スプロケットが取り付けられているのが、同年代のホンダのXLR250Rでは、ストロークの大きなゴムダンパーを間に挟む感じで組み立てられる。

もちろん、このゴムダンパーは簡単に交換できるので、シフトショックやアクセル開閉の感触が悪くなったら、交換すればいいのだが、そのダンパーが絶対取り付けなければならないダンパーだとしたら、そのバイク造りは、少し疑問がわく。

ここのゴムが劣化(熱による加硫が進み硬化する。更に摺れて磨耗する)して、ダンパーのストロークが多くなってしまうと、僅かにアクセルを開けたとき(エンジンブレーキ状態の減速中から穏やかにやると)、一瞬遅れて動力(駆動力)が発生するかのように感じてしまう。

どのようになるかというと、エンジンの回転が空転した後となるので、ガツンという軽いショックを伴ってから駆動力が伝わる。実に愉快な感触なのである。

開発実験で、過酷な走行後を長距離、長時間、高温・低温にわたって行わないと、一般ユーザーが感じる経年劣化による不快感は出ないだろうから、それならそのような状態となった(絶対同じではないが)ダンパーゴムを作って、感触を確認すれば済むこと。

で、その確認が出来た後の処理が問題。ただ単純に「ダンパーゴムの耐久性を引き上げる。とか、交換すれば済むこと」とやったのでは、次に進む楽しいバイクは出来ない。

リヤスプロケット取り付け部分にゴムによる緩衝装置として、絶対に必要な状態であるなら、そのダンパーストロークを可変にする装置を組み込めば済むはず。

スプロケット取り付けボルトを利用して、ダンパーゴム側へ突き出している動力伝達部分をカム状にし(挟んだスチールプレートを膨らませるような形でも良い)、これを外部から回しゴムダンパーへ動力を伝える部分の厚さや圧力を可変にすれば、新車のときからライダーの好みに合った、駆動系の伝わり方が選べるはず。

新車の時には、まるでシャフトドライブでもあるような、アクセルの開閉に間髪を入れず反応していた、気持ちの良い感触のバイクが、1万キロ近くなると、「あのときの感激はどこへ」の寂しさも防げる。簡単に出来そうな感じなのだがな~

2014年12月8日月曜日

不定期連載 数式を使わない、クルマの走行安定性の話・6/17


バイクで大切なのはステアリングヘッド

バイクの話をしてみよう。クルマとはコーナリングにおけるスタイルが違い、リーンにおけるタイヤのキャンバースラストが、コーナーを曲がる力となる。では、直進時はどうかというと、これはクルマと同じことが要求される。フレーム剛性と、サスペンション剛性、そこにホイールとタイヤの剛性まで関係し、安定性を出す。

そして、その裏にはキャスター/トレール、タイヤの幅も考えた設計がなされるが、最近のレーサーレプリカのように、キャスター角が立っている設計は、短いホイールベースと合わせ、太いタイヤを使用して、コーナリング性能を上げても、ヒラヒラ感を求めた結果、自然の成り行きであのような設計になったもの。

タイヤが太くなれば、当然路面からの外乱は受けやすくなる。それをキャンセルするにはラジアルタイヤの採用であったり、トレール量の変更であったりしたわけだ。しかし、ここで大切なことはステアリングヘッドである。

バイクにおけるステアリングヘッドの役目は、コーナーを曲がるためばかりでなく、直進性と走行安定性を保つためでもある、と考えたらどうだろうか。このステアリングは感じないぐらいのストロークで、絶えずグラグラしながら、バイクのバランスを保ち続けている。

路面からの外乱は、直進時ばかりでなくコーナリング中にも受ける。つまりスムーズにステアリングヘッドが左右に動くことで、バイクのバランスは保たれることになるわけで、もしこのステアリングヘッドががっちり締め付けられていたとしたら、直進しながら横転するし、コーナリングするために、リーンしても旋回性能は発生せず、ハンドルをライダーが切る、という行為をしなければならない。

一度コーナリングを開始したらそのままの姿勢を保ち続けようとする力が強く、立て直すことは出来ずに転倒する。仮に直進に戻すために、バイクを立て直したらその瞬間反対側へ転倒する。

バイクのステアリングヘッドは、ライダーに感じさせないぐらいのストロークと周波数で、絶えず左右に動いていることは知っておきたい。このことはクルマにもいえることで、タイヤに対し、クルマが安定して走るに足りるストロークで、自由にしてやるのがポイントではなかろうか。

また、ゴムは摩擦が大好きであることを忘れてはいけない。そして、その摩擦は非常に強いもので、縁石に接触した大型トラックをいとも簡単に跳ね上げるほどである。

ゴムは摩擦が大好きで、そこが一番と言うことの証明として次のようなものがある。それは平ベルトと中央が高くなった樽型プーリーの関係である。

一般的には、Vベルトを使うと考えられがちだが、プーリー間の距離があり、テンショナーなどを使えない場合、また、回転方向を右や左に変える必要があるときなど、たすきがけができることから平ベルトの方が融通が利く。

この平ベルトに対するプーリーは、前記したように中央が高くなった樽型である。何故樽型なのかを考えてみると、それはベルト/ゴムが摩擦の多いところを好むからである。平ベルトと樽型プーリーの回転する様は、実にユーモラスで、外れそうになると中央に戻り、またはずれそうになると中央に戻る、という動作を繰り返す。欠点はスリップすると瞬間に外れてしまうことである。

これはタイヤと路面との関係にも似たものがある。何事もなくタイヤが転がっているときには安定しているクルマが、スリップを始めたとたんコントロールを失うのと同じだ。