研究開発に見た遠回りの結論にあきれる -水素エンジンと点火装置-


2020年9月24日木曜日

トヨタが試作した2ストロークエンジンについてケチをつけた16

トヨタがポペットバルブ式2ストロークエンジンを試作したことがあったのをご存知だろうか。当時は、2ストローク開発が盛んで、スバルが開発していたのはポペットバルブではなく、バイクエンジンのようにシリンダーに開いたポートで吸気と排気のタイミングを取るもの。

もちろんスーパーチャージャーを装備し(クランク室の1次圧縮がないから、過給装置は絶対に必要)、クランク室はウエットサンプで、オイルリングが取り付けられているのは当然。 排気タイミングも重要で、当時バイク(ヤマハのYPVSとかホンダのATACなど)でしっかりと開発が進行していた構造を採用した。しかし、実験で造ったのは1シリンダーモデル。これでやれると思い、4気筒としたら、排気タイミングの機構が動かない。

更にクランク室のオイルが燃焼室に入り、排気煙がひどいばかりではなく、アイドリング回転も高くて普通に走行できる状態ではなかった。 そんな状況は、実際にそのスバル2ストロークを研究所に取材に出かけていたので、目の前で見ていた。単気筒試作エンジンを造った方と、その実験結果をマルチシリンダーに使って設計した方が違っていたのは、不思議なことだった。

原因は、各シリンダーの熱が、他のシリンダーにどのような影響を与えるか、と言う考えに及ばなかったこと。「聞いてくれれば教えてあげたのに」と、開発者に申し上げたが、失敗作扱いで、すでに開発は終了していて・・・

話は代わって同時期に、トヨタが試作した2ストロークエンジン試乗会での性能を、フリーライターから聞いて「どのように設計したのかを想像できた」 その性能は、とにかく回転が上がらない。動くことは動くが、走ると言う表現は使えない。回転計を見ると2000rpmが精一杯、と聞いていたので、おおよそ見当がつく。

そして、その年のモーターショーにそのエンジンが展示されていたので、開発者を捕まえて、かなり強烈な質問を浴びせた。 「このエンジンは、ヒョットすると、4ストロークと同じように、吸気側のバルブが大きく、排気側が小さい設計ですね」と言ったものだから、その担当者は「その通りです、よくわかりましたね」と言ってきたので、「いくら過給しているからといって、その過給圧で排気と掃気を考えた場合、吸気バルブと排気バルブの開口面積は、4ストロークと同じに考えたのでは、ただ始動できるだけのエンジンとなって、中身がないでしょう」、と言ったものだから相手は少しビックリ。

バイクエンジンのように1次クランク室の過給圧を利用して、掃気と排気を行えれば、それに越したことはないが、ポペットバルブを使用した2ストロークとなると、そんな理論は通用しない。

スーパージャージャーを採用して、その圧力により僅かの時間に開いている吸気バルブから空気を押し込み、僅かな時間に開いている排気バルブから排気ガスを押し出し、かつ、シリンダー内に新気となる空気を十分に送り込ませる必要がある。 吸気工程が存在しないと言っても過言ではない状況だから、それは非常に短い時間で完結させなければならないわけで、そうなると吸気側のバルブは小さくして(1シリンダー4バルブだったら、3ブルブを排気側とするなど)、過給圧を高くし、しっかりと空気を送り込みながら、掃気と排気を助ける設計が絶対に必要だからだ。

ここに行き着かなければ、2ストロークポペットバルブエンジンは実用化しない。 また、カムシャフトはエンジン回転数と同じに回転し、バルブの開閉もそれに合わせて、4ストロークの倍となるため、バルブそのものやバルブスプリング、リテーナーなどの関係パーツは、チタンなどの軽量素材を使う必要がある。 その後に他のメーカーが試作した同様な機構の2ストローク軽自動車のエンジンでは、ムービングパーツの全てをチタンとしたものが、モーターショーで展示されたこともあったが・・・

トヨタの場合、そのモーターショーには別の2ストロークエンジンが展示されていたと思う。排気量の小さな(600ccだっだと思う)2ストローク2気筒の試作エンジンで、スーパーチャージャーはルーツではなくリショルム式が採用されており、過給圧を高めてエンジンとしての資質に成功している。 この試作エンジンを搭載した試作モデルの取材申し込みにも広報を通さずに可能となり(後日話はしたが)、当時の東富士研究所に出向き、エンジン音や走行状態を見て、その完成度の高さに驚かされたが、やはり製造コストの問題が尾を引いており、量産化にはならなかったのは残念。同時期にヤマハも同様なエンジンの開発をやっていたと言う記憶があるが、取材していないので詳細は不明だ。

2020年9月17日木曜日

2ストロークエンジンに耐久性がないという話は、真実なのだろうか?



今でこそ、排気ガスの関係で2ストロークのクルマやバイクは市販(レーサーは別)されなくなったが、それまでにも言われてきた「2ストは耐久性がない」と言う話は、真実なのだろうか。

なぜそういう結論を出したのか少し考えてみると、勘違いが多くあることに行き着いた。

結論から言うと、2ストロークのほうが耐久性は高い。それは、常に新しいエンジンオイルが供給されているから。また、発熱量も小さいため、熱による歪も少ないので、潤滑オイルに負担が掛からないことも耐久性に影響している。

では、なぜ2ストロークは耐久性がない、と言う話がまことしやかに叫ばれるようになったのだろうか。

それは、エンジンの造り方と組み立て方、使用するオイルに潤滑方法などが関係している。

分離給油(ヤマハが最初)が出てくるまでの潤滑は、ガソリンとエンジンオイルを混合する、混合方式。15:1から始まり30:1などにグレードアップしたが、いずれにしてもオイルとガソリンの混合方式であると、エンジンに負荷がかからないアイドリングから、急な坂での登坂と言う、エンジンにとっては過酷な状況の中でも、決まったオイルの混合比でまかなうということになる訳で、エンジンに負荷が少ない領域では、未燃焼のオイルはカーボンとなり、エンジン内やエキゾースト周りに堆積する。

この溜まったカーボンは、走行中にホットスポットとなるばかりではなく、排気ガスがスムーズに排出されないことで、排気の熱がエンジンに溜まり、オーバーヒートから焼き付きという結果を招く。

では、なぜ2ストロークは・・・となってしまったのだろうか。それは、そのエンジンの造り方が間違っていたからだ。

研究者の経験が間違っていたとしたら、どうなるのだろうか?その間違いは「2ストロークはどのように造っても耐久性はないし焼きつきも起こしやすい」というようなことで、これがそもそもの間違いと言える。

2ストロークの構造的な問題は、シリンダーに吸気(クランクケースの場合もある)と掃気、更に排気のポートが付いていることで、このことが何を呼び起こすのか、と言う点についての研究がなされていないと、「やっぱり2ストロークは・・・」となってしまう。

耐久性が高かった事例としては、ホンダCRM250Rをバイク便として使った例がある。それまでは、高性能なシングルバイクが良い、と言う評判でそれを使っていたが、業務で、酷使すると、本来持っている性能が露呈する。それは最高速度や走破性という見えるものではなく、如何に長持ちするかと言う耐久性である。

そうなると、2ストロークのネックとなる設計不良を取り除いて、トータルの性能向上を果たしたバイクの評価が高くなる。

どの部分が2ストロークとして重要かということになるが、それは、熱歪をいかにして、それが起き難い基本的な設計に行き着くかである。

特に排気ポート周りの熱歪に対する考え方は重要で、どのような形状がいいか、当時の空冷方式では(強制空冷を含めて)、排気ガスからの影響で高温となる部分は、冷却風による冷却効率を高めようと、排気ポート周りの厚みを薄くする(確かに薄くすれば熱伝導率が高くなり、冷却と言う点からだけ見ると、それでいいのだが)、と言うことにこだわると、薄く造れば熱による歪は大きくなり、その結果排気ポートからの歪はシリンダー内のいたるところに波及し、シリンダーの変形により焼きつきと言う現象になる。

しかし、そのエキゾーストポート周りをたっぷりとした容量の大きな形状で造ると、空冷による冷却効率は下がるが、熱による歪は少なく、安定したエンジンとすることが出来る。

ある強制空冷の2ストロークを分解してみたことがあるが、シリンダーの排気ポート上部に、焼きつきやオイル切れによる引っかき傷はなく、ピストンの接触面もきれいな状態を保っていた。そして、そのシリンダーを観察してみると、排気ポート周りはこれでもか、と言うほどの金属の塊で構成されていた。その結果、熱歪は少なく、エンジンの性能ダウン(ダレという表現をする)は見られないと言うことだ。

これにより焼き付きや、歪による異常磨耗はなく、酷使しても最後までエンジンは使えるというのだ。

バイクに限らず、360cc時代の軽自動車(当然強制空冷)でも、オイル管理と使用するオイルを選ぶことで、20万キロ以上にわたり快適に走っていたと言う話を、そのオーナーから聞いたことがある。「2ストロークエンジンの耐久性がない、と言うのは違う」とその方も力説していた。

また、アウトボードモーターボートエンジンでは、その昔常識的に採用されていた。パワーがありコンパクトで軽量と言うのが理由だが、排気は水中(マフラーなど付けられる状況ではない)であるから、排気ガスにオイルが含まれることになるので、海や湖などが汚染される。

そこで出てきた規制が、かの有名なボーデン湖規制と言うやつ。どの程度の規制なのか忘れたが、かなり厳しいもので、そのためにガソリンに混合するオイルは60:1や100:1などと言うとんでもなく薄い比率。この薄さで全負荷運転するのだから、そこに求められるエンジンの材質と規格はものすごいこととなる。

2ストロークのロードレーサーも100:1や120:1と言う、オイルが混じっていることを確認できないくらいの混合比で走らせていたのだ。

この少ないオイルで性能を発揮できるし、4ストロークのたっぷりとあるエンジンオイルに比べたら、普通に使う限り問題などでなくてあたりまえ、と言うことが言えそうだ。

このボーデン湖規制が更に強くなった結果、現在の4ストロークアウトボードエンジンが開発された。

余談だが、当初は4ストロークのアウトボードエンジンが海外メーカーでは、求められる性能で開発できなかったため、日本のスズキやヤマハからのOEMで賄っていた。

2020年9月7日月曜日

②面白い画像と写真。何用のエンジンなのかの説明


は、スバルがF1エンジン・コンストラクターをやろうとしたときのもので、シャシーはミナルディを使うことになっていたが・・・このチームには通訳として日本人が居た。でも、幅が広くなるエンジンは空気抵抗が多く、結局ものにならなかった。エンジンの設計はイタリアのキティ博士。

さすがにイタリア、フェラーリと同様の考え方をしているのが分かるだろうか。

12気筒なのにクランクシャフトのジャーナル(支持部分)は、なんと4箇所しかない。スバルの考え方なら13個になる。4箇所のジャーナルではまともに高回転しない。フェラーリのF1エンジンも同様に設計されていたと言う(ホンダがF1から撤退するとき、当時のフェラーリエンジンを分析し、ホンダ流の設計で試作して、その試作エンジンと図面などのデーターをフェラーリに譲渡した)。フリクションが多いなら、そのフリクションとなる部分を減らしてしまえ、と言う、イタリアならではの設計で実に分かり易い考え方が見えていた。
 

そして、水平対向ではない。フェラーリも市販のスーパーカーエンジンは、同様な造り方で、ピストンは対向状態になっていなかった。

V90度エンジンのように、ひとつのクランクピンに対して、左右のコンロッドを取り付けるタイプ。90度Vであると、エンジンの1次振動(エンジン1回転ごとに出る一番大きな振動)がなくなるのでいいのだが、180度Vと言うレイアウトではそれを望むことは出来ない。

ここにもクランクシャフト剛性をどう考えているのか不思議に見える。対向ピストンとすれば大きな問題は片付くのだが。

今ではこんなエンジンは市販車にもない。水平対向となれば、2気筒でも振動は少ない(BMWのバイク)。ホンダのバイクにもある、水平対向6気筒となるとエンジン単体での始動でさえ、固定しない状態で、アクセルを大きく開けても、その場で暴れだすことはないという話も聞いた。

で、キティ博士設計のこのエンジンは、1年後だったかのWSPCにエントリーしていたが、練習、予選で、走行シーンを見ることはなかった。

 

マツダがル・マン24時間耐久レースで優勝したときのエンジン全体図

トルクカーブを力強くするため、インテークには長さを電子制御するテレスコピックのエアホーンが装備された。最初のエアホーンはスロットルと連動だったと思うが、定かではない。
 

 

メルセデスがグループCでのレース用として新しく開発したエンジン。水平対向12気筒である。インテークとエキゾーストが上側にある。吸気効率と排気効率にエンジン搭載の高さを考えたらこのような設計となるが、排気が上側と言うのは、エキゾーストパイプの高温を冷却する効率が悪い。
 
 

カウルの中に高温が溜まるので、トラブルの元。このエンジン搭載のレースは、鈴鹿サーキットで行われたWSPC。ドライバーのひとりはM・シューマッハだったが、ピットでの給油で失敗し、クイックチャックが閉まりきらなかったようでガソリンが噴出し、火が着いたのをシューマッハも気が付き、逆バンクを上がる途中でグリーンに飛び出し、クイックチャックの蓋を閉めようと、火がチョロチョロ着いている状態でいじっていたが火は消えない。

そこにオフィシャルが消火器を持ってきて、火を消そうと言うアクションを起こしたので、シューマッハはそのオフィシャルの行為を止めようとしていた。その理由は知らない。しかし消火器は噴射され、火は消えたがシューマッハはリタイアとなった。レース(正確にはピット作業やマシンの状態とメカニズム)を取材に行っていたので、この状況は肉眼で確認した。