結論を先に言ってしまうと、高回転まで安定したスパークを得るため、ということになる。
ポイント式普通点火装置では、4気筒以上のマルチシリンダーエンジンが、高回転高出力化できない理由があった。
ポイント式普通点火の時代であるから、この話しはかなり前のことになるのだが、当時はその理由を理解する人が少なかった。多気筒化すれば全てのフリクションが増えるからではない。同じ排気量なら多気筒化することによって燃焼室が小さくなる(シリンダーボアも)ため、エンジンの最高回転を高く設計できるので、それをギヤで減速すれば駆動トルクは上がる。つまり加速はよくなるのだが。
ただし、その条件が整っていなければ高回転を望んでもそれは無理。バルブタイミングや燃焼室形状、バルブの径などだけが関係している訳ではない。
忘れてはいけないのが点火装置である。そして、当時のポイント式点火装置で、ディストリビューターを使用したものでは、エンジン回転が高くなると点火エネルギーの不足が生じてしまう。その結果、不完全燃焼となりHCを多量に放出するだけではなく、エキゾーストマニホールド内で燃焼するため、オーバーヒート現象まで引き起こす。もちろん急速燃焼とならないため、エンジン回転は上がらない。
その理由は、回転上昇によってポイントの閉じている時間が少なくなるからだ。つまりイグニッションコイルに対して、十分な電気エネルギーを送り込むためには、それ相当の時間が必要。多気筒とディストリビューターが合体すると、ポイントカムは気筒数のカム山が必要となり、ポイントカムが高回転となればポイントが閉じて、イグニッションコイルへ通電している時間は回転の上昇と共に少なくなる。結果、点火エネルギーの減衰が起き、吸気量に見合った燃焼とならないのだ。
ディストリビューターを使うポイントでポイントがひとつのものは、気筒数分だけポイント開閉用のカム山がある。カム山の数だけポイントは閉じている時間が少なくなる。エンジン回転を上げると、そのことが問題を引き起こす
点火装置に関わるシステムの話になるのだが、これを知るにはコイルの自己誘導作用について理解しておく必要がある。
コイルに直流の電流を流すと磁界が発生する。ただし、コイルには磁界の発生を妨げる方向に起電力が起きる。
このためコイルに電流を流したとしても、電流は直ぐに最大とはならず、一定の時間後に最大電流となる。この時間はイグニッションコイルの巻き数によって違うが、100分の1秒~1000分の1秒単位である。
また、コイルに電流を流しておきながら、これを急激に遮断すると、コイルには電流を流し続けようとする起電力が一瞬発生する。
このようにコイルに対して電流を流し始めるとき、電流を絶つときに、コイルの磁束の変化を妨げようとする現象がコイル自身の中に生ずる。これを自己誘導作用と呼び、そのときに発生する起電力を逆起電力と呼ぶ。
ところで点火装置に使用するイグニッションコイルは、ふたつのコイルを並べた状態で(鉄芯に巻かれている)、入力側のコイルを一次コイルと呼び、そこに流れる電流を変化させると、出力側となる二次側のコイルには、一次コイルの磁界の変化を妨げる方向に起電力が発生する。これをコイルの相互誘導作用と呼んでいる。
つまり、一次コイルに一定の電流が流れているときは、磁界が変化しないので、二次コイルには起電力が発生しない。
しかし、この状態から電流を遮断すると、今まで発生していた磁界が急になくなるので、二次コイルには磁界の消滅を妨げる方向に起電力が発生する。
直流電流ではこのように動作するが、交流電流では、周波数(正弦波)の関係で、交互にプラス・マイナスに電流が変化することから、二次コイルには、一次コイルとの巻き数比に合わせた電圧が常に発生する。つまり相互誘導作用が連続的に起きている。一般的なトランスがそれである。
これがトランス。直流では使えないが、交流(発電所が作る電気がそれ)はトランスを使って電圧の上げ下げが簡単に出来る。ただし効率は悪い。最近では、一般家庭でも最終的に直流化して効率を高くする、インバーター制御が当たり前。テレビやPCも直流を使う。そのため、発電所からの電気も直流のほうが効率が高く、変更しようではないかという運動が起き始めている
以下次回に続く