研究開発に見た遠回りの結論にあきれる -水素エンジンと点火装置-


2012年2月3日金曜日

トウモロコシは食べるだけではなかったんだ

トウモロコシというと、日本では家畜の飼料かおやつに食べるぐらいにしか考えていないが、実は非常に奥の深い繊維質を持った種で、これをベースにいろいろ出来あがっている。それも日本では思いも寄らない、今でも認識していないような使われ方を、数年前からアメリカやヨーロッパの国では展開している。

ひとつはアメリカでやられていること。目的は日本と同じだが、そこに使われるものがトウモロコシを加工したものか、発泡スチロールを使ったものかの違いだ。当然日本は発泡スチロール。アメリカはトウモロコシ。では何に使われるのかというと、荷物を発送するときの、隙間を埋めるパッキング材。

だいぶ前のことだが、アメリカから送られてきた品物の中に詰められていたパッキングは、なんだかうす茶色で、発泡スチロールのように弾力性は強くない。もちろんビニール(違うかも)製の袋に詰められていることは同じ。そして、その袋には何やらプリントされている。そこには「食べるな危険とか、子供の手の届かないところに置くこと」などと言うことは書かれていなかったように思う。さらに見ると「・・・コーン」とか何とか読めるが、何を言っているのか、当時の英語力では十分理解出来なかったが、コーンはトウモロコシのことであるし「どくろマーク」も付いていない。

指先でつまんでみると、プチッとつぶれて何かを発泡させたものであることがわかる。臭いをかいでみるが、よくわからない。ポップコーンではない。しかし、「・・・コーン」と書いてあるのだから、トウモロコシがベースなのであろう????

数時間後には、一粒口の中に入れていた。すると、マシュマロのごとく、クニャクニャになり、しばらくすると溶けてしまった。これどういうこと。

アッそうか、発泡スチロールでは使用後の処分で環境問題が出るけれど、トウモロコシならその辺に捨てても土の養分になるから、処理は問題ない。そしてもうひとつ気が付いた。それは、幼児の事故である。つまり、発泡スチロール製のパッキング材では、幼児がいたずらして、口に入れた場合、気管に詰まらせて窒息死することがあるのだが、トウモロコシベースのパッキング材は、前記したように、口の中で溶けるし毒性はない。さすが環境やPL法にうるさいアメリカであると思った。

さらにもうひとつ、テレビで見た光景。フランスのあるチョコレートを作る会社でのこと。丸いチョコレートとするため、ベルトコンベア上には、凹みのある型が流れている。日本であったらおそらくこの型はPP(ポリプロピレン)だろう。でもそのチョコレートメーカーは、トウモロコシをベースにして作られた型を使っていた。チョコレートメーカーが型を作っているとは思えないので、規則でそうなっているのかどうか不明であるが、それにしても、日本の環境や安全に対する考え方には、大いに疑問が残る。

2012年1月27日金曜日

ピストンのフリクションをゼロにしたら どうなる?

ピストンのフリクションに対する研究はかなり進んでいると思うが・・・

 エンジンの効率を上げるため、各部のフリクション低減に対して躍起になっている状況は見て取れる。でも、フリクションをゼロにする研究はなされていないようだ。

ピストンのフリクションを低減するため、ピストンのスカート部分にはWPC処理や二硫化モリブデンコーティング(パターンコーティングもある)などやっているが、直接シリンダー壁とピストンスカートが接することを狙っての処理ではなく、オイルが介在するときの引き摺りを少しでも減らすように願うだけ。

言ってみれば、オイルを弾くような表面処理がなされることで、引き摺りを少なくしようと言うのである。

その昔は、条痕仕上げと言う表面加工で、僅かなギザギザ仕上げの部分にオイルを保持させると言うもの。この仕上げはディーゼルエンジンで始まり、数万時間使用された建設機械エンジンのピストンを見たことがあるが、シリンダーとピストンが接したような跡はどこにもなかった。

このようにピストンとシリンダーとのフリクションを低減してきたのだが、低減と言う研究だけで、フリクションをゼロにする、と言う研究はなされていない感じだ。コンピューターでシミュレーションしたくても、ベースとなるデータはない。

試乗会などで、エンジン開発担当の技術者と話しをするときに、ピストンのフリクションをゼロとした実験などやったことがありますか? と聞いてみるが「そんなこと考えてみたこともありません」の返事ばかり。そこで次のようなことを話す。

ピストンとシリンダー間のフリクションをゼロにして研究する方法は簡単。

実験に使用するシリンダーをボーリングする(STDから0.25mmオーバーでいい)。そして使用するピストンはSTD。ピストンリングは0.25mmオーバーサイズ。

これで普通に組み付ける。エンジンを始動してもピストンのサイドノック音は出ない。クリアランスが大きく、ピストンの振れている範囲をピストンリングによって抑えられてしまうからだ。

実験エンジンなので耐久性はなくてもかまわない。トップリングが燃焼熱にさらされて都合が悪いと言うなら、トップランド(トップリング溝からピストン頂面までの部分)だけ0.25mmオーバーサイズの、頭だけ大きなピストンを造ればいい。

短時間の実験が終了して、耐久テストに持ち込みたいのなら、ピストンスカート部分にピストンリングを追加する、サードリング方式を取り込めば解決する。ただしリングとピストンの形状でフリクションは増加してしまうが。

では、こんな馬鹿なことが現実にあるのか、と言うと、実は経験しているのである。

それは今から45年ほど昔の話。大学時代、当時のアルバイトと言うと、もっぱらバイクの修理や再生を頼まれてやることでの金稼ぎ。

エンジンからのオイル漏れ修理で持ち込まれたホンダ・ドリームC72(写真はホンダコレクションホールから)。このエンジンにはサイズ違いのピストンが組み込まれていた。それがとんでもない性能となって現れた。ものすごくダッシュするのだ。オーナーは、しばらく乗っていたがエンジンは非常に快調だった、とのこと。ピストンが小さくても、意外に耐久性がありそうだ。

あるとき、「修理屋に出したバイクだがオイル漏れがひどく直してほしい」と言う依頼があった。持ち込まれたホンダC72を見ると、シリンダーガスケットの不良なのか、オイルがいたるところから噴出していた。

エンジンを降ろしシリンダーヘッドを取ると、ピストンとシリンダーのクリアランスが異常に大きい。

シリンダーを外して確認すると、ボーリングしてあるようで、ピストンリングは0.25という刻印がある。しかし、新品に交換してあるとは言うものの、ピストンはSTDである。

これでは、サイドノック音が出てしまうので、ピストンはオーバーサイズに交換しますか、と言うことをオーナーに伝えると「いや、音は出ていなかったので、そのままでいい」と言うので、部品交換はせずに、ガスケット交換と液体パッキンの使用で修理。これでオイル漏れは完璧に治った。

さて試乗してみる。確かにピストンのサイドノック音はせず、普通のエンジンになっている。しかし、暖機するための空吹かしをやると、やけにレスポンスがいい。そして少しエンジンのメカ音も大きくなる。

ギヤを入れゆっくりと走り始め、バランスの取れる速度(4~5km/hぐらいだろう)を保ってから、アクセルをいきなり全開に。

すると、びっくり仰天の事態が発生した。何と、ドン臭いビジネスモデルのC72は、フロントを大きく持ち上げて数メートルのダッシュ。

そして、フロントが着地したときの衝撃のすごさ。サスペンションがボトムリンクでストロークが小さなバイクでは仕方がないことであるが、まさかの事態を予想できず、ビックリだけが残った。

当時のエンジンではピストンとシリンダーは接触していただろうから、ピストンリングの張力と相殺するのは難しいとしても、いかにピストンがフリクションとしてあるかの証明にはなるし、また、簡単にピストンのフリクションをゼロとした実験ができると言う話。

ここにもブレークスルーはありそうな感じである。

ピストンを取っちゃたらどうなるか、そりゃエンジンとして成り立たなくなる。そこから最低限のピストンの役割について考えると、今までの考え方が正しいのか。単純に、ピストンとシリンダーのクリアランスにこだわっていただけではないのだろうか・・・

2011年12月16日金曜日

CAN-BUSアダプターって何だ

簡単に言ってしまうと、これを使わないとクルマに電気用品が取り付けられない車種に対して、それを解決出来るというアダプター。

最近のクルマは、コンピューターが至る所に使われており、それに関わる配線は膨大なものとなる。さらにステアリング周りには数多くのスイッチが設けられるなど、ますます配線の量が多くなるのだが、これをこれまでと同じ方法で接続したのではトラブルの元。それだけではなく部品コストも増加する。

そこで考えられたのが通信による信号のやり取りで、電気製品の電源を制御したりエンジン制御へ送る信号の伝達として、CAN通信が採用されることになったのだが、これがクルマ好きにとってはうれしくない改良なのだ。

何がうれしくないかというと、エンジンコンピューターなどに入る信号線がなくなって、CAN信号線だけだからである。

これまでのエンジンコンピューターには、カーナビや回転計を取り付けるときに必要な信号として、スピードセンサー、エンジン回転センサーなどの入力線があったのだが、それがない。この状態では、何も取り付けられない。このような車種が軽自動車にまで及んでいるのが現状。

ある回路では電流量も制御に入っているようで、オーディオ回路からカーナビの電源を取ったら、オーディオのスイッチが入らなくなり、もちろんカーナビにも電気が流れない状況が発生するようだ。こうなったときには、その配線をはずして、バッテリーのターミナルを抜き、数十秒たってから接続すれば元に戻せるが、カーナビの電源は別から取る必要がある。しかし、ACCなどからとっても同様なトラブルが起きるので、対策が必要となる。

そこで登場したのが、CAN通信の信号を読んで、その信号を解析し必要な情報を取り出そう、というもので、それがCAN-BUSアダプターというわけだ。

取り付けは簡単で、OBDⅡ(オン・ボード・ダイアグノーシス・Ⅱ)という、トラブルを呼び出すスキャンツールを差し込むコネクター(アメリカが要求したもので世界的に共通したもの)へ差し込むだけのものと、OBDⅡからは電源を取りキャン通信線(HiとLoの2本)へエレクトロタップで接続するだけ。

キャン通信線は、OBDⅡコネクターの付近に(運転席側にありわかりやすい状態であること、という規則がある)クリクリと捻られた線が2本あるのですぐにわかる。

CAN-BUSアダプターから出力されるのは車速信号、エンジン回転信号、常時電源、ACC電源、イルミネーション電源、リバース信号、パーキングブレーキ信号で、リバース信号は最大200mA、ほかの電源は最大500mAであるから、大きな電流が必要なら、この部分を信号として使い、ダイレクトに電源から引いた線をリレーで作動させればいい。
左がアダプター本体。右にあるプラグはOBDⅡ端子に接続する。それによって必要な情報が取り出せる

2011年12月12日月曜日

エンジンルームから配線を室内へ引く方法はこれがいい


クルマに電気用品などを取り付けようとすると、物によってはエンジンルームから室内へ配線を引き込む必要が出てくる。

ところが、これが意外に大変で、メインハーネスのブーツを切り裂いて通したり、ステアリングシャフトの根元にあるブーツの間から引き込んだり、実に大掛かりな作業となる。しかも、失敗するとショートや断線にも結びつく。

そこで我が家では、ドアのウエザーストリップから引き込む方法を取っている。これが一番簡単で早く失敗がない。

どのようにウエザーストリップから通すのかというと、ウエザーストリップの上を通すのではなく、内側を通すのである。

現在のクルマは、ウエザーストリップを接着しているわけではなく、ボディにはめ込んでいる。つまり、いつでも簡単に引き剥がせる状況にある。これを利用する。

やり方は、ボディから引き剥がしたウエザーストリップの内側に配線を入れ、雨が伝わってきても室内へ流れ込まないよう、外側で一旦垂れ下がるように曲げておいてから室内へ入れ、ウエザーストリップで固定すれば終了。

たったこれだけ。もちろん太さが5mmもあるようなコードは無理だが、電流を多く必要とする場合は、細い線数本に分けて使えば済むこと。

太目のコードは、ウエザーストリップと直角に固定するのではなく、斜めに沿わせる形にすると、コードとウエザーストリップの嵌め込み部分にストレスが少なくなるので、浮き上がることもない。

早いし、楽だし、取り外すときにも跡が残らないので、この方法が絶対お勧め。
ウエザーストリップは簡単に引き抜けるので、このように配線を引き回す。水切りとして垂らす場所は、もっと上部でもかまわない。やりやすい場所を選んで確実に形を作ればいいだけだ
引き込む配線をボディに沿わせておいて、ウエザーストリップを嵌め込めんで固定すればそれで終了

またやってる、道路運送車両法保安基準違反の推進を


2011年のモーターショーも終わったが、気になるブースの展示を見つけた。それは、これまでにもあったことなのだが・・・

これまでにもあった問題点とは、クルマの前方に照射するライトの色についてである。最初がいつだったかはっきりしないが、確かモーターショーが幕張メッセに移ってから数回後だったと記憶している。

あるライトメーカーの展示ブースで、ヘッドライトの周囲に取り付けたパイプ状の青色リングライトが点灯するデモ機。これは明らかに違反行為なので、担当者を呼び消灯するようにアドバイスをし、一般公開時では点灯することはなかった。

しかし、時が流れ、デイライトの有効性が叫ばれ始めたとき、オートサロンに展示したある自動車メーカーの補助灯が青色になっていることを見つけ、ここでも消灯するようアドバイス。

両方ともショーに展示しているデモカーだから・・・と思われるかもしれないが、これを見た一般の方々は、「自動車部品や自動車メーカーが出しているんだから青色でいいんだ」という認識をしてしまうので、非常に問題だというのが私の見解。

デイライトの色が問題になり始めたとき、国土交通省のサイトには「デイライトの色に関するQ&A」があり、ここでは、「青色をデイライトに使っても違反にならないのか」という問いに対し「青色を禁止する項目はありません」という返事が書かれていた。

ところが、しばらくして「すみません、間違っていました。自動車の前方に照射するライトの色は透明(白色を含む)と淡黄色という道路運送車両法保安基準がありますので、青色は使えません」という訂正文が国土交通省の同サイトに載っていたが、すでに時遅しだった。

なのにまたである。メーカーとしてどうあるべきか、ということの認識を持たないと、同じ過ちを繰り返してしまう。今回は、気がついた時点で一般公開となってしまっていたため、後の祭りだ~~~
自動車の前方を照射するライトの色は法律で決まっているのだが、その認識を持たないと、どんな色でもかまわないことになる、たとえ赤でも・・・

2011年11月25日金曜日

2012年次RJCカーオブザイヤー顛末記


 今年のRJCカーオブザイヤー最終確認テストが、11月15日ツインリンクもてぎ内の周回路を利用して行われ、当日投票して結果が出た。

 当日は、事前に選ばれたシックスベストのクルマや技術が、ツインリンクもてぎのパドックに持ち込まれ、改めて試乗したり、開発者から話を聞いたりするわけだが、そのシックスベスト(6のノミネート)を選ぶにも、会員の気持ちとメーカーやインポーターのヤル気がその結果に繋がるのは当然だ。

 最後の確認試乗が開始される前のパドック。メーカーの関係者がミーティングをする風景も見られる

 そのシックスベストだが、テクノロジー(新型車に採用された新技術)は、マツダ・デミオのSKYACTIV-G 1.3、同じくマツダ・アクセラのSKYACTIV-Drive、日産リーフの電気自動車技術、トヨタ・プリウスαのコンパクトなリチウムイオンバッテリー、フィアット500/500Cに搭載のTwin Airエンジン、ボルボS60/V60に採用された歩行者検知機能付追突回避・軽減フルオートブレーキシステム。以上順不同

 インポート(輸入車)は、フィアット500/500Cツインエア、アウディA1BMW1シリーズ、シトロエンDS4、フォルクスワーゲン・パサート/パサートバリアント、ボルボS60/V60。以上順不同

 カーオブザイヤー(国産車、逆輸入車も含める)は、ダイハツ・ミラ・イース、ホンダ・フィットシャトル、マツダ・デミオ13SKYACTIV、日産リーフ、トヨタ・プリウスα、スズキ・ソリオ。以上順不同

 投票会場前には広報の方々が最後のお願いに集まる。しかし、ここで会員の気持ちが揺らぐことはない。一種のパフォーマンス?
 そして、もてぎでの最終投票の結果、選ばれたのは、テクノロジーがマツダ・デミオのSKYACTIV-G 1.3。インポートがボルボS60/V60。カーオブザイヤーは日産リーフだった。

 この結果は、予想通りというのが会員大半の意見。つまり、メーカーやインポーターの広報活動が影響を与えているといっても過言ではない。

 テクノロジーはマツダデミオのSKYACTIV-G 1.3に決まる。圧縮比14と言う数字を具現化した技術が評価されたのだ。実用燃費も高い

 インポートはボルボS60/V60に決まる。特別強い個性を持たないが、時代を先取りする安全技術などが盛り込まれたことも評価された

 もちろん、問題のある技術やクルマに対して、どこかの国のお役人ではあるまいし、裏取引で票集めをしたわけではない。どうしてもRJCのカーオブザイヤーが欲しいという気持ちが、試乗会や技術の説明会を頻繁に開催する。RJC会員に対して見識を持ってもらいたいがためである。その見識を持って「投票願いたい」、という気持ちの表れが、結果に繋がったのだ。

 まだ未完成(充電インフラや、道路環境など多いと思う)と言われるEV市場で、日産リーフがカーオブザイヤーとなったのは、三菱のi-MiEVが市販されたときにカーオブザイヤーが採れなかったことから、同様なリーフがそれを採るのはおかしい、という批判もあるだろう。しかし・・・

 当然のことだが、私の評価はどちらも同じ。以前のi-MiEVに対しても最高点を入れたし、リーフも同様に最高点を入れた。

 時代を牽引する技術やクルマに対しては「差別なく評価する」。そして、それができる見識は重要であると思っている。

RJCカーオブザイヤーは日産リーフ。三菱i-MiEVから具体的に始まった電気自動車へのシフトは、世界規模へと動き始めた。専用設計のボディによる性能は実用性を高い方向へ導いている

2011年11月6日日曜日

ブレーキ不調の原因は、フルードの混合にあった


知り合いのメルセデス。最近中古で購入したものだが、当初からブレーキの不調を訴えていた。それは、走行中のブレーキングで後輪がいきなり効いたままになったり、駐車場から出そうとすると、走り出しが重かったりという現象。それもしばらく放置するとそのトラブルが消えてしまう。

何が悪いのか、「一度見てやるから自宅に持っていらっしゃい」、という話をしておいたら、やってきました翌日には。
 
エンジン停止の状態で、ブレーキペダルを数回踏んでみると、ブレーキブースターにはバキュームがなくなっているにもかかわらず、踏み応えが優しい。つまり、まるでブースターが作動しているかのように、フワフワした感触がある。これは、ブレーキエアが入っていると判断し、早速エア抜きを開始する。

フロントはブレーキペダルを踏むたびにブレーキ液がブリーダープラグから(少し足らない感じだが)排出される。

ところが、リヤにおいては一向に排出されない。バキュームポンプを使って引き抜き作戦を試みたが、それでもブレーキ液が吸引される気配はない。試しにブリーダープラグを締めて、ブレーキの踏み応えを確かめると、なんと感触ゼロ。踏み代がひとつもないのである。 これこの通り、目
の前にマスターシリンダーがあり、ブレーキパイプのフレアナットを緩めるにも、ブースターからマスターシリンダーを取り外すにも、苦労はしない。

そのときの状態をリザーバータンクの液面で見ると、ブレーキペダルを踏んだときには液面が下がり、ペダルを放すと元の液面に戻る。つまり、ブレーキ液はマスターシリンダーとブレーキパイプ、ブレーキキャリパーまでの間を行ったり来たりしているということになる。

ここで思い当たるのは、息子のハーレーでブレーキパッドを交換したとき。リヤブレーキのパッドを交換し、いざブレーキペダルを踏んで踏み代を出そうともがいたが、一向にパッドはローターに当たらない。よく見ていると、ブレーキペダルを踏むとパッドが押されるが、ブレーキペダルを放すと、パッドが元の位置に戻る。

これは、ヒョットするとブレーキ液の混合があったのかもしれない、という判断の元、マスターシリンダーを分解してみると、ピストンのカップは膨潤して大きくなり、カップの役目をせずリングの作動となっている。

本来ならピストンが戻るときにカップとシリンダーの間をブレーキ液が通過しなければならないわけだが、それが出来ていない。更に、ブレーキペダルを放したときに必要な、ブレーキラインの残圧を逃がす、コンペンセーティングポート(リターンポートと解釈して良い)もカップで塞がっていた。

この原因は、ブレーキ液の品質違いを混ぜたこと。ハーレーはシリコン系を純正としているが、日本国内で普通に流通しているのはグリコール系。このふたつが混じるとゴムは膨潤してトラブルを起こす。

 マスターシリンダー分解では、スナップリングにスナップリングプライヤーを引っ掛ける穴がないので、シリンダーの一部を削り、小さなマイナスドライバーを差し込んで、こじり出した。分解考えていないのかな~。

市販のブレーキ液には「このブレーキ液はグリコール系。シリコン系や鉱油系との混合は禁止」と表示してある。更に、「自動車用非鉱油系ブレーキ液」と書いてあるはずだから、これをしっかりと守ることが重要。

ブレーキクリーナーなどで洗浄すれば、シリコン系のブレーキ液を使用していたものに、グリコール系を使っても膨潤は起きていないことから、変更するために専用のカップやシールの必要性はないようだ。

以上の経験から、メルセデスも同様な状態にあるのではないかと、マスターシリンダーを取り外し(国産車よりもやりやすい)分解してみると、ピストンにはめ込まれているカップは3個とも、フニャフニャで使える状態にない。リヤのオイルシールも膨潤し、まともな状態ではない。
 この通り、すべてのゴムカップは膨潤してフニャフニャ。カップ状態とならず、シリンダーの中ではどちらからの圧力も受けるリング状態となってしまう。これではブレーキ液を送っても、引き戻す作用が起きて、使い物にならない。

マスターシリンダーの構造がこれまで分解したものとは違うので(国産車ばかり。ハーレーのブレーキも日本製)、ブレーキ液の流れや作動状態を把握するのに時間がかかったが、ブレーキペダルを放した後の残圧を逃がす、コンペンセーティングポートの構造が大きく違っていることに気が付いた。

日本製は、ピストンのカップが通過するシリンダーに、リザーバータンクと繋がる小さな(1mmぐらい)穴があり、ブレーキペダルを踏むとカップはその穴を通り越して油圧が発生し、ペダルを放すとカップとシリンダーの間をブレーキ液が流れて、キャリパーから戻るブレーキ液の遅れ分を補う。ペダルが完全に戻る瞬間、コンペンセーティングポートとリザーバータンクが繋がり、マスターシリンダーの残圧はリザーバータンクへ戻る。
 問題はカップだけではなかった。コンペンセーティングポートの作動が壊れていた。
国産車で使われているものでは、写真のようなところにあるのがコンペンセーティングポートで、この図は少しブレーキペダルを踏んだ状態。ポートはカップが通過することでリザーバータンク繋がりがなくなり、油圧を発生させる。ピストンが戻るとコンペンセーティングポートとリザーバータンクは繋がるので、残圧をリザーバータンクへ戻す。

このコンペンセーティングポートが正しく作動しなければ、ブレーキラインの残圧は残り、ブレーキが効いたままとなってしまう。

ブレーキトラブルのメルセデスは、シリコン系とグリコール系のブレーキ液が混合されたことで、ゴムが膨潤した。それにより、パッドが摩耗しても必要なブレーキ液は送られず、まるでエアを吸い込んだ状態となったばかりではなく、ブレーキペダルを踏んで出来た液圧の開放ラインが閉ざされてしまい、リヤのブレーキが効いたままとなる状態が発生していたのだ。
 メルセデスに使われていたピストンをよく見ると、なにやら見慣れぬ構造がある。リヤ側(手前)ピストンには、直角に開いた穴にグラグラ動く四角い棒が取り付けられている。フロント側のスリットは、ピストンの動きに対応するものだが、その中を見ると、何か出張っている。ドライバーで押してみると、ピコピコ動き出たり入ったりする。弱いスプリングが組み込まれているようだ。リヤ側も同様な作動なのだろうが動きは渋い。これがコンペンセーティングポートの役目をする部分で、ピストンが押し戻されたときに、この細い棒が押し込まれ、通気状態になり減圧されるのだ。この作動がトラブルを起こしており、どの状態としても通気しなかった。


リヤのブレーキに関わる部分の膨潤がひどかったのは、リザーバータンクの構造が関係する。つまり、フィラーキャップの位置が、リヤブレーキを受け持つ側(後方)に付いていたため、ブレーキ液補給のとき主にリヤ側に混ぜてはいけないブレーキ液が入り込んだからだ。

部品を注文しようと近くの部品商へ電話してみると「本国オーダーとなり一ヵ月半かかります」との返事。さーどうしようか、と思案していると、メルセデスのオーナーは「自宅に別のメルセデスから取り外したマスターシリンダーがあるので、それが使えるかどうか調べます」という。

ネットで注文した中古品は形が違って使えず(かなりいい加減な業者だ)。「そういえば・・・」で思い出したマスターシリンダーがピタリと合って、翌日にはブレーキトラブルは解消した。

ガソリンに浸すと大きく膨潤するので、内部のシリコン系ブレーキ液が排出されないかと、数分浸けてから天日干ししたが、完全に元へは戻らなかった。


 メルセデスのW202Cクラス。V6エンジンを搭載する。ボンネットが直角に開くため、ブレーキのマスターシリンダー脱着はとてもやりやすい。